
Krutarth Majithia et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 12, (Part - 1) December 2015, pp.46-50

 www.ijera.com 46 | P a g e

Visual Product Identification for Blind

Krutarth Majithia*, Darshan Sanghavi**, Bhavesh Pandya***, Sonali

Vaidya****
*(Student, Department of Information Technology, St, Francis Institute of Technology, Mumbai University,

Maharashtra, India)

**(Student, Department of Information Technology, St, Francis Institute of Technology, Mumbai University,

Maharashtra, India)

*** (Assistant professor, Department of Information Technology, St, Francis Institute of Technology, Mumbai

University, Maharashtra, India)

*** (Assistant professor, Department of Information Technology, St, Francis Institute of Technology, Mumbai

University, Maharashtra, India)

 ABSTRACT

This project is developed to make the life of blind people easy. This is a camera based system to scan the

barcode behind the image and read the description of the product with the help of Id stored in the barcode. This

is very beneficial in case of finding out the description of packaged goods to the blind people and thus helping

them in deciding to purchase a product or not especially which are packaged. This is because it becomes very

difficult for the blind people to distinguish between the packaged goods. In order to use this system, all the user

needs to do is capture the image on the product in the mobile phone which then resolves the barcode which

means it scans the image to find out the Id stored. Thus this application really benefits blind and visually

impaired people and thus making their work of identifying products easy. This is very easy to use and affordable

as it requires a scanner to scan the barcode and a camera phone to take the picture of the image containing the

barcode. This is now easy to implement as most of the mobile phones today have the required resolution in order

to scan the barcode to identify the Id stored in it and read out the product description. This project can be

implemented in any shopping mall, supermarket, Book stores, Medical stores etc.

Keywords: barcode, camera phone, scanner

I. INTRODUCTION
This project is developed to make the life of

blind people easy. This is a camera based system to

scan the barcode behind the image and read the

description of the product with the help of Id stored

in the barcode. The system can be broken down into

four main sub-systems: a detection part that looks for

evidence of a barcode in the image, a direction

system that guides the user to a barcode if one is

found, a decoding step that decodes the actual UPC-

A code from the barcode once all the edges are seen,

and the final stage which matches the UPC-A code to

a product descriptions and outputs this information.

This part is based on a previous publication by

the authors, that models a barcode as a deformable

template.

Using video capture from the board, the image is

taken from the camera to Simulink and is converted

from YCrCb to RGB for better processing in

Simulink.

The feature calculations module of the algorithm

creates 3 scanlines for scanning barcodes as well as

calculating the pixel values from the barcode

intensity image in a given row to a vector.

The barcode recognition module consists of three

parts: bar detection, barcode detection, and a barcode

comparison block. The bar detection block detects

bars from the barcode feature signal.

In the barcode validation stage of the algorithm, the

simple calculation is used to determine whether the

barcode is valid or not.

II. Other Existing System
Before we go into the details of our algorithms,

we give a brief overview of the major steps, shown

schematically in Fig. 1. The system can be broken

down into four main sub-systems: a detection part

that looks for evidence of a barcode in the image, a

direction system that guides the user to a barcode if

one is found, a decoding step that decodes the actual

UPC-A code from the barcode once all the edges are

seen, and the final stage which matches the UPC-A

code to a product descriptions and outputs this

information. Below is a summary of these steps:

RESEARCH ARTICLE OPEN ACCESS

Krutarth Majithia et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 12, (Part - 1) December 2015, pp.46-50

 www.ijera.com 47 | P a g e

1. Detection:

(a) Lines in 4 different orientations swept to

determine collection of edge points with

alternating polarities.

(b) Line scores tallied in direction perpendicular to

sweep direction to get 2D representation of

possible barcode areas.

(c) Orientation entropy used to eliminate false

positives (e.g. dense text).

2. Direction:

(a) A maximal bounding box to enclose the detected

barcode is calculated.

(b) The user is directed to the barcode by voice

commands until enough edges are seen.

3. Decoding:

(a) Slices with maximum number of edges are found

and edges localized with sub-pixel accuracy.

(b) Maximum likelihood (ML) estimation of the

fundamental width and fixed edges.

(c) ML estimation of the barcode digits using the

check bit.

(d) Detection attempted both right side up and

upside down.

4. Output:

(a) Product information retrieved from database and

read out.

III. Proposed System
3.1 Algorithm for Finding Barcodes

1D barcode patterns are characterized by a

rectangular array of parallel lines. The particular

symbology we focus on in this paper is UPC-A (Fig.

2), which is widespread in

North America and encodes a total of 12 decimal

digits (one of which is a checksum digit that is a

function of the preceding eleven digits). The UPC-A

pattern contains a sequence

of 29 white and 30 black bars, for a total of 60 edges

of alternating polarity.

Figure. UPC-A barcode, encoding 12 digits

The code axis runs left to right in this image and

the bar axis runs vertically upwards. Note that the bar

patterns representing any specific digit have opposite

polarity on the left and right sides of the barcode.

Any algorithm for finding a 1D barcode will conduct

some sort of search for linear edge features in an

image. While simple pre-processing steps such as

intensity binarization and line extraction may be

useful for identifying these features when they are

clearly resolved, these steps may fail when the

barcode is viewed from a distance. Instead, we

decided to begin our detection algorithm by drawing

on a simple, local image cue: the direction of the

image gradient. The important signature of a barcode

region is that, among pixels where the image gradient

is significantly above zero, nearby pixels in the

region have gradient directions that are either roughly

aligned (corresponding to edges of the same polarity)

or anti-aligned (corresponding to edges of opposite

polarity). Thus, in the first stage of our detection

algorithm, we calculate the image gradient

everywhere in the image, and at all locations where

the gradient magnitude is above a threshold (which

we refer to as edge pixels) we calculate the gradient

direction as an angle from 0 to 2_. Next we scan the

image in four different orientations: horizontal,

vertical, and both diagonals (±45◦). Let us consider

the horizontal orientation first. The scan is conducted

in raster order (top row to bottom row, and left to

right within each row), and we search for edge pixels

whose orientation is consistent with vertical bars. For

each such edge pixel, we search for a nearby “mate”

pixel with the opposite polarity. Once a sufficient

number of these pixels are found close by on aline

segment, this segment is saved for the next step

which sweeps the lines in a direction perpendicular to

the first sweep direction to see if there are any

approximately consecutive segments that have

similar beginnings and ends. If a number of candidate

Krutarth Majithia et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 12, (Part - 1) December 2015, pp.46-50

 www.ijera.com 48 | P a g e

line segments with similar beginnings and ends are

found in this manner, this area is saved as a possible

barcode candidate and passed on to the next stage

which eliminates false positives that may arise, such

as dense text when seen from a distance. These

algorithms are summarized in Figures 3 and 4. The

gradient angles which were quantized into 16 bins are

histogrammed into 8 bins by combining pixels whose

directions are 180 degrees apart. We then calculate

the entropy of the resulting distribution, and compare

it to a maximum threshold. Since a barcode is

expected to only have lines of a single orientation, we

expect a low entropy value. This stage eliminates

false positives from the previous stage such as text,

which has more orientations. As we direct the user to

the barcode by giving directional feedback, the

localization accuracy also increases.

3.2 Algorithm for Reading Barcodes

This part is based on a previous publication by

the authors, , that models a barcode as a deformable

template. We start with an initial estimate of the

fundamental width, X, of the barcode (i.e. the width

of the narrowest black or white bar) using the end

points of the barcode bounding box from the previous

stage. We first model the “fixed edges” of a UPC-A

barcode, which are shown in Figure 2 as the guard-

band edges and the digit boundaries shown in red.

We model these fixed edges and digits conditioned

on the barcode slice as obeying a Gaussian

distribution centered around their expected geometric

locations (which consists of their expected absolute

distance from the left barcode edge and their relative

distance from the previous fixed edge), and an

exponential distribution in terms of their gradient

strengths as given below: P(E,D|S) / e−L (E,S)− G

(E,D) (1) where L(E, S) is the (log) likelihood term

that rewards edge locations lying on high-gradient

parts of the scan line , and G(E,D) is the geometric

term that enforces the spatial relationships among

different edges given the digit sequence.

By assuming conditional independence of a fixed

edge from the previous fixed edges given the

immediately prior edge, we can come up with a

Markovian description of the fixed edges. This

allows us to the find the maximum likelihood

estimate of these locations efficiently using the

Viterbi algorithm. We then iteratively refine this

estimate and the fundamental width until we are

satisfied with our estimate.

Once we find the fixed edge locations, we

calculate the probabilities of the “in-digit” edges for

each barcode digit, which gives us a distribution on

the probabilities of each digit 0, . . . , 9 for this

location. These are then used in conjunction with

fixed edge estimates to get an overall estimate of the

barcode. Since the digits are not conditionally

independent due to the check bit, we use an auxiliary

variable that is a running parity and preserves these

probabilities as well as obeying the Markovian

property. Hence, we can once more use the Viterbi

algorithm to efficiently calculate the maximum

likelihood estimate of the barcode. We use a multi-

candidate Viterbi algorithm to ensure that the

probability of our estimate is sufficiently larger than

the probability of the second best ML estimate. We

also ensure that the estimate is at most 1 digit away

from the individually most likely digit estimates,

since the parity digit is only guaranteed to find

single-digit errors. This algorithm is summarized in

Figure 5.

Figure : Line Scan Algorithm

probabilities of the “in-digit” edges for each barcode

digit, which gives us a distribution on the

probabilities of each digit 0, . . . , 9 for this location.

These are then used in conjunction with fixed edge

estimates to get an overall estimate of the barcode.

Since the digits are not conditionally independent due

to the check bit, we use an auxiliary variable that is a

running parity and preserves these probabilities as

well as obeying the Markovian property. Hence, we

can once more use the Viterbi algorithm to efficiently

calculate the maximum likelihood estimate of the

barcode.

We use a multi-candidate Viterbi algorithm to

ensure that the probability of our estimate is

sufficiently larger than the probability of the second

best ML estimate. We also ensure that the estimate is

at most 1 digit away from the individually most likely

digit estimates, since the parity digit is only

guaranteed to find single-digit errors.

Krutarth Majithia et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 12, (Part - 1) December 2015, pp.46-50

 www.ijera.com 49 | P a g e

3.3 Methodology

3.3.1. Color Conversion

Using video capture from the board, the image is

taken from the camera to Simulink and is converted

from YCrCb to RGB for better processing in

Simulink. The conversion requires taking the YCrCb

and splitting it into the three color signals of Y, Cr,

and Cb. After the split, since the Cr and Cb are

smaller in dimension than Y, the Cr and Cb are

upsampled using chroma resampling and transposed

to match the dimensions of RGB from the 4:2:2 to

4:4:4. The three color signals are transposed again

before sending them to the color space conversion

from YCrCb to RGB still in three separate signals.

The separate RGB signals are concatenated with a

matrix concatenate for one to use as display, and for

another line, it is sent to convert from RGB to

intensity. The grayscale version of the image will be

inserted to the feature calculations.This process of

color conversion is also reversed before sending to

output of board, except in this case, it will be from

RGB to YCrCb.

3.3.2 Feature Calculations

The feature calculations module of the algorithm

creates 3 scanlines for scanning barcodes as well as

calculating the pixel values from the barcode

intensity image in a given row to a vector. First a

Gaussian filter is implemented to smooth out the

image gradient identified as the barcode region. The

gradient of the scanlines are set and validated so that

the scanlines are inside the appropriate range. Then,

the mean and standard deviation of the pixel

intensities are calculated for the barcode area. The

range of pixel parameters, f_low and f_high, for

setting the color is determined. Pixels on the

scanlines are compared to the f_low and f_high

intensity values. A pixel is considered black if its

value is less than f_low, and it is considered white if

its value is f_high or larger. The remaining pixels are

proportionally set between white and black. Black

pixels are set to 1 and white pixels are set to -1. From

the calculations, the vector of pixels from the

scanlines is inputted to the barcode recognition. The

scan lines are also sent to display to be added to the

real time video.

3.3.3. Barcode Recognition

The barcode recognition module consists of three

parts: bar detection, barcode detection, and a barcode

comparison block. The bar detection block detects

bars from the barcode feature signal. First, it tries to

identify a black bar, if it is not there, then the first bar

has zero width. If there is a black bar, then it

calculates the pixels of the black bar. For the white

bars, it does the same. After the bar detections, the

barcode detection begins with the beginning bars and

calculates all the possible values of barcode values

that may form a valid string with all the possible

separators. This function returns sequence of indices

to barcode guard bars. The barcode comparison block

takes in the codebook for all the encoded GTIN 13

barcode values. It also reverses it for determining the

last 6 digits of the GTIN 13 barcode. The barcode

recognition block takes in the barcodes and tries to

match up the barcode with the numbers of pixels

generated from the bar detection. In order to ensure

better accuracy, the values are calculated from the

left to right and right to left. The normalized

confidence is calculated. The barcode recognition

block set returns the barcode and the normalized

confidence.

3.3.4. Barcode Validation

In the barcode validation stage of the algorithm,

the simple calculation is used to determine whether

the barcode is valid or not. It is calculated by taking

the even elements and multiplying them by three.

Then, add the sum of the odd elements with the sum

of the even elements. Take 10 mod the sum and

subtract 10. If the answer is the same as the check

digit, which is the last digit, then the barcode is valid.

This validation along with a confidence level higher

than the threshold allows the barcode to be displayed

on the screen.

3.3.5. Display

The display adds the scan-lines to the real time

video and displays the barcode only if it is validated

and has a high enough confidence level to enable the

switch for display. All the information is sent to the

module to convert the 3 dimensional matrices back to

2D matrices. Then, RGB is converted to YCrCb

format to display through the board.

3.3.6. System Implementation

After designing and testing the algorithms

primarily in Matlab, the entire code base was ported

to C++ for speed. The system was executed on a

desktop computer with an inexpensive webcam, and

the manual focus of the webcam was set to an

intermediate focal distance: far enough for the

webcam to resolve barcodes sufficiently well to be

detected at a distance, but close enough for the

webcam to resolve the barcode clearly enough to

read properly at close range. We also experimented

with autofocus webcams, but the time lag due to the

autofocus feature proved to be impractical for a real-

time system. Microsoft Speech API was utilized for

the oral directional feedback. We devised a simple

acoustic user interface to guide the user to the

barcode. For each image frame, if a candidate

barcode is detected then the system issues directional

feedback instructing the user to move the camera left,

right, up or down to better center the barcode in the

field of view. If the barcode is oriented diagonally

Krutarth Majithia et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 12, (Part - 1) December 2015, pp.46-50

 www.ijera.com 50 | P a g e

then the user is instructed to rotate the barcode, to

allow the barcode to be aligned either approximately

horizontally or vertically with the pixel lattice; this

was done because the square pixel lattice maximally

resolves the 1D barcode pattern when the code axis is

perfectly horizontal or vertical, whereas barcodes

oriented diagonally are harder to resolve. (Note that it

is unnecessary to tell the user which direction to

rotate in, since the user need only align the barcode to

the pixel lattice modulo90◦.) If the barcode is close

enough to detect but too far to read then the system

tells the user to bring the camera closer, or if the

barcode covers a very big portion of the webcam, the

user is instructed to move farther to ensure the whole

barcode is captured. Once the barcode is sufficiently

close and well centered, the system attempts to read

the barcode repeatedly (sounding a beep each time to

inform the user) until the barcode is decoded with

sufficiently high confidence. The barcode digit string

read by the algorithm is looked up in a UPC code

database (freely available online at

http://www.upcdatabase.com/); if the string exists in

the database then the corresponding descriptive

product information is read aloud (e.g. “Walgreens

Fancy Cashew Halves with Pieces. Size/Weight: 8.5

oz. Manufacturer: WALGREEN CO.”). If the string

is not present in the database then the system alerts

the user to this fact and outputs the barcode string.

Even though the detection stage worked well at

320x240 resolution at around 15fps, for our

experiments we used 640x480 resolution to be able to

resolve more lines and read the barcode when it is not

exactly aligned. In this mode, using a 2.4Ghz Intel

Pentium processor with 2GB of RAM, our algorithm

ran at up to 7fps (detection and decoding) without

sound. However, due to the lag caused by the TTS

(text-to-speech) system, in normal circumstances we

are limited to only a few frames a second, which

seemed to be sufficient for this experiment.

IV. Conclusion
We have described a novel algorithm for finding

and reading 1D barcodes, intended for use by blind

and visually impaired users. A key feature of the

algorithm is the ability to detect barcodes at some

distance, allowing the user to rapidly scan packages

before homing in on a barcode. Experimental results

with a blindfolded subject demonstrate the feasibility

of the system. In the future we plan to port our

system to a camera phone, and to extend our system

to symbologies other than UPC-A, such as the the

EAN-13 (which is widespread in Europe).

REFERENCES
[1] A. Adelmann, M. Langheinrich, and G.

Floerkemeier. A toolkit for bar-code-

recognition and resolving on camera phones

- jump starting the internet of things. In

Workshop on Mobile and Embedded

Interactive Systems (MEIS’06) at Informatic

2006, 2006.

[2] D. Chai and F. Hock. Locating and decoding

EAN-13 barcodes from images captured by

digital cameras. In Information,

Communications and Signal Processing,

2005 Fifth International Conference on,

pages 1595–1599, 2005.

[3] O. Gallo and R. Manduchi. Reading

challenging barcodes with cameras. In IEEE

Workshop on Applications of Computer

Vision (WACV) 2009, Snowbird, Utah,

December2009.

[4] E. Joseph and T. Pavlidis. Deblurring of

bilevel waveforms.IEEE Transactions on

Image Processing, 2, 1993.

